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Outline

® Background and motivation

= Series-stacked architecture
= Previous work
= Advantages and challenges

= Top down:
" General purpose computing units
= Extreme efficiency data center power delivery
= Scalability, experimental results

= Bottom up:
= Specialized compute cores
= Power converter and load integration
= New switched-capacitor architectures

= Conclusion
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Today’s Challenge — The Looming “Power Delivery Wal
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" Continued voltage reduction
" CPU power has remained fairly constant
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CPU Current Trends
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VRM limitations

VRM Power Converter 100 W 32 Core Microprocessor
12V VDD=0'5V
o -
] @ Iop=200AT1,=6.25A J1,=6.25A Y15,=6.25A
Cj _||:|>”l!‘ﬂ‘-‘ gﬁ)‘ns Core 1 |[|Core 2 Core 32
ST - | I N

= Large current on I/O pins

= Difficult to realize large step-down voltage conversion
on-chip

" Efficiency is limited by power converter efficiency

Can we leverage the increased core
count for power delivery purposes? :



Multi-core trends
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Other Applications — Low Voltage Sources

= Solar

= 0.5Vcells Fopoo- . i

= 30V modules [..ﬂ— SN

= 600 V strings S |

NE
_—

= Battery systems ==

= 3-12 Vcells :

= Up to 400V DC bus _'_1:

Series-stacking is widely used in low voltage DC sources



Series-stacked Architecture - Promise

I

100 W 32 Core Microprocessor

o—o©

/0O pins +IDD=6.25A
m Stack N cores to +
match input voltage Core 1 | Vpps=0.5V
" Inherent voltage step- )
down .
" Greatly reduced I/O Cj 16 V Core 2 | Vppo=0.5V
current . -
= No power conversion |
losses! |
+
|60re 32 | Vppsp=0.5 V
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Series-stacked Architecture - Challenges

I

100 W 32 Core Microprocessor

o—o©

/O pins +IDD=6.25A
Core 1 :/DD1=0.5 Vv
= \/oltage regulation )
= Grounding N
= Communication @ 16V Core 2 | Vppo=0.5V
across voltage -

|
domains l
I

+
|60re 32 | Vppg=0.5 V




Prior Work
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Domains,” APEC 2013

= \We are looking at massively scaled architectures for
future multi-core architectures

= Rely on high efficiency power electronics



Data Center Architectures

= Before:
= Single computer
= Single processor
= Single core
= Stacking not
beneficial
= Today:
= Warehouses of
computers

= Multi-processor
severs

= Multi-core CPUs

= Stacking helpful,
across the full system

Blue Waters @ lllinois
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Top Down — General Computing Units

Data center application

Vdc-hv T o

DC DC DC
AC DC DC DC
Vgri d Vbus Vbus Vbus
12V 12V 12V
Server Server Server

" Motivation here is conversion efficiency
® Shares many constraints with stacked cores
" Proof-of-concept demonstration
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Series-stacked Architecture - Challenges

Vdc

+
= \/oltage regulation 12V
5 : 5 Server | Vsn
" Grounding : -
= Design change | .
= Communication across ac T | 12V y
voltage domains (f\g Server | 's3
= Ethernet 1500 V isolation " 9rd DC| +
* Fiber-optic 12V
" . . Server | Vs2
" Hot-swapping, reliability -
2v | 7
Server | Vs
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Proposed Solution — Differential Power Processing

v'Voltage regulation by
Injecting or rejecting
current from nodes.

v'Bidirectional DPP

converters process only | v Serl\,er1
the difference in power S R == Sy
+
v'Bulk power is delivered G“’(’\E AC )t Ve | Servers
to the series-stacked | oc | " t—>—{DPP
servers without being .
processed. ., —1DPP

Vg, | Server,
|

P.S. Shenoy, and P. T. Krein, “Differential power processing for dc systems,” Power

Electronics, IEEE Transactions on, vol. 28, no. 6, pp.2980 — 2997, June 2013. 1



Differential Power Processing — Low Voltage Ratings
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= Non-isolated
" |nefficient power transfer
= Order-dependent
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Candan INTELEC 2014

"

= |solated converters
= Minimum power transfer
= Order independent
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Dual Active Bridge DC-DC Converter

Primary and secondary side bridges
>

Transformer\

= Four prototype DAB
converter are designed as
DPP converters.

= Simple phase shift
modulation is used.

Control signals ~Test points

= Symmetrical design at both rbeemdicagsltoes
. at input and output
SldeS Of the tra nSforme r. 120 W 12V-12V dual active bridge converter

DAB CONVERTER SPECIFICATIONS AND KEY COMPONENTS

1001

Rated Power bl Fom o oo

Peak Efficiency 95% %[

Switching Frequency 175 kHz . ot

Modulation Technique Simple phase shift g o

Control Mode Bidirectional Hysteresis c

Switch DrMOS - Vishay SiC780ACD |

Digital Isolator TI - ISO7241C 75

Microcontroller TI - C2000 Piccolo . ‘ , , . ‘ .
0 20 40 60 80 100 120

Output Power [W]
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System Level Control

= Control Objectives:

= Server voltage regulation. . ——=1bcC
: Vg | Server,
= Virtual Bus voltage laus ) DC|_
regulation. , I:DC }
= Voltage sampling only. . | VelSenver|| Aq |
= No communication Ve (D) ‘ |
between converters. " v [server, DCDC
" Highest possible light-load ' I: B
efficienc DC lvg
Y Vs [ Server, ;L Vo
T 4 -
= Bi-directional = =
Hysteresis Control
E. Candan, “A Series-stacked power delivery architecture with isolated converters for energy efficient data centers,” 17

Master’s Thesis, University of Illinois at Urbana-Champaign, 2014.



Experimental Setup and Tests

IHiun oLl oo ULIIILY" UL IUAlviu (Ch

S€MVEL}ies-conntected DPP VB
Motherboards Conv. Cap.

A. Waterland, Stress POSIX workload generator. [Online]. Available: http://people.seas.harvard.edu/~apw/stress/

Dell Optiplex SX775
Core 2 Duo

Motherboard Input: 12V

DPP converter

Agilent 6674A
W
: F 5 SECE E
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Experimental Setup — Conventional Architecture

DC

I

IS1 ISZ IS3

DC —+ ] DC —+ ] DC +

Server, Vss Server,

| AC
Grid

____________________

Agilent 6674A SynQor PSU

DC| - DC| -~ © DC| -

DC +

DCL_-

48V to 12V

= A best-in-class PSU with 96% peak efficiency.
= |dentical web traffic and computational tests.
" The same measurement unit.

*SynQor PQ60120QEx25 - S200

Dell Optiplex SX775

Core 2 Duo
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Experimental Results — Computation Test
Typical waveforms
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Comparison

COMPARISON OF PROPOSED ARCHITECTURE WITH CONVENTIONAL ARCHITECTURE

Web Traffic Test Computation Test
Proposed Conventional || Proposed Conventional
< Py, > [W] | [241.09 252.87 426.60 447.59
< P> [W] | |237.98 238.58 | 426.11 426.51
< Plogs > [W] 3.11 14.29 0.49 21.08
Efficiency [%] | |_98.71 94.35 | [ 99.89 95.29 |

With server to virtual bus DPP:
v' 4.6 times reduction in average power loss for web traffic
v" 40 times reduction in average power loss for computation

Note that the standard power supply for this system has
80-90% efficiency
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Ongoing work

= Core-level emulation
"= 1GHz ARM Cortex-A8

= 5V, 1A Power
requirements

= On-board PMU

" Resonant SC DPP
converters

" | oad balancing strategies
= Modified Hadoop scheduler

Working with software and CPU architecture
partners (you all should)



Bottom Up — Stackable Cores

I

u TO d a y : COMMUNICATIONS-INSPIRED:

= Tight voltage regulation
= Transient conditions

" Error-free computing
= Digital logic has priority

= Tomorrow?
= Deeply scaled CMOS (post-CMOS)
" |ncreased variations

= Embrace errors?
= Communication-inspired computing

= Power delivery and computing
equal partners

Systems On Nanoscale Information
fabriCs Center (SONIC)
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Compute VRM
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JSSC 2014
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Embrace the ripple

Core activity switch
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Conclusion

" Demonstrated a scalable series-stacked computer
architecture

= 12 Vservers
= Differential power processing
"  40x loss reduction compared to state-of-the-art

= Qutlined design challenges and opportunities for
core-level work

= Requires careful cooperation/co-design of power
electronics, CPU, and software

" Emerging compute units compatible with series-
stacking may be best way forward

Post-CMOS devices may be the ultimate driver for this technology
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